Archive for the 'Killing of intracellular mycobacteria' Category

Killing of Mycobacterium avium and Mycobacterium tuberculosis by a Mycobacteriophage Delivered by a Nonvirulent Mycobacterium: A Model for Phage Therapy of Intracellular Bacterial Pathogens

January 12, 2017
Lawrence Broxmeyer, Danuta Sosnowska, Elizabeth Miltner, Ofelia Chacon, Dirk Wagner, Jeffery McGarvey, Raul G. Barletta, and Luiz E. Bermudez

Killing of Mycobacterium avium and Mycobacterium tuberculosis by a Mycobacteriophage

The Journal of Infectious Diseases


Mycobacterium avium causes disseminated infection in patients with acquired immune deficieny syndrome. Mycobacterium tuberculosis is a pathogen associated with the deaths of millions of people worldwide annually. Effective therapeutic regimens exist that are limited by the emergence of drug resistance and the inability of antibiotics to kill dormant organisms. The present study describes a system using Mycobacterium smegmatis, an avirulent mycobacterium, to deliver the lytic phage TM4 where both M. avium and M. tuberculosis reside within macrophages. These results showed that treatment of M. avium–infected, as well as M. tuberculosis –infected, RAW 264.7 macrophages, with M. smegmatis transiently infected with TM4, resulted in a significant time and titer  dependent reduction in the number of viable intracellular bacilli. In addition, the M. smegmatis vacuole harboring TM4 fuses with the M. avium vacuole in macrophages. These results suggest a potentially novel concept to kill intracellular pathogenic bacteria and warrant future development.

1. Bloom B. Tuberculosis: pathogenesis, protection and control. Washington,DC: American Society for Microbiology Press, 1995.
2. Surveillance TWIGP. Anti-tuberculosis drug resistance in the world. Geneva:World Health Organization Global Tuberculosis Programme, 1997.
3. Inderlied CB, Kemper CA, Bermudez LE. The Mycobacterium avium complex. Clin Microbiol Rev 1993; 6:266–310.
4. Palella FJ Jr, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338: 853–60.
5. Kaplan JE, Hanson D, Dworkin MS, et al. Epidemiology of human immunodeficiency virus–associated opportunistic infections in the United
States in the era of highly active antiretroviral therapy. Clin Infect Dis 2000 ; 30(Suppl 1):S5–14.
6. Falkinham JO 3rd. Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 1996; 9:177–215.
7. Guthertz LS, Damsker B, Bottone EJ, Ford EG, Midura TF, Janda JM. Mycobacterium avium and Mycobacterium intracellulare infections in patients with and without AIDS. J Infect Dis 1989; 160:1037–41.
8. Heifets L. Susceptibility testing of Mycobacterium avium complex isolates. Antimicrob Agents Chemother 1996; 40:1759–67.
9. Horsburgh CR Jr. Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med 1991; 324:1332–8.
10. Chaisson RE, Benson CA, Dube MP, et al. Clarithromycin therapy for bacteremic Mycobacterium avium complex disease: a randomized, double-blind, dose-ranging study in patients with AIDS. AIDS Clinical Trials Group Protocol 157 Study Team. Ann Intern Med 1994; 121:905–11.
11. Young LS, Wiviott L, Wu M, Kolonoski P, Bolan R, Inderlied CB. Azithromycin for treatment of Mycobacterium avium–intracellulare complex infection in patients with AIDS. Lancet 1991; 338:1107–9.
12. Bermudez LE, Kolonoski P, Young LS. Roxithromycin alone and in combination with either ethambutol or levofloxacin for disseminated Mycobacterium avium infections in beige mice. Antimicrob Agents Chemother 1996; 40:1033–5.
13. Dube MP, Sattler FR, Torriani FJ, et al. A randomized evaluation of ethambutol for prevention of relapse and drug resistance during treatment of Mycobacterium avium complex bacteremia with clarithromycin-based combination therapy. California Collaborative Treatment Group. J Infect Dis 1997; 176:1225–32.
14. Holzman D. Phage as antibacterial tool. Genetic Engineering News 1998; 18:11–16.
15. Ford ME, Stenstrom C, Hendrix RW, Hatfull GF. Mycobacteriophage TM4: genome structure and gene expression. Tuber Lung Dis 1998; 79:63–73.
16. Foley-Thomas EM, Whipple DL, Bermudez LE, Barletta RG. Phage infection,transfection and transformation of Mycobacterium avium complex and Mycobacterium paratuberculosis. Microbiology 1995; 141:1173–81.
17. Bermudez LE, Parker A, Goodman JR. Growth within macrophages increases the efficiency of Mycobacterium avium in invading other macrophages by a complement receptor–independent pathway. Infect Immun 1997; 65:1916–25.
18. Jacobs WR Jr, Kalpana GV, Cirillo JD, et al. Genetic systems for mycobacteria. Methods Enzymol 1991; 204:537–55.
19. Black CM, Bermudez LE, Young LS, Remington JS. Coinfection of macrophages modulates interferon gamma and tumor necrosis factor–induced activation against intracellular pathogens. J Exp Med 1990; 172:977–80.
20. Hafner R, Inderlied CB, Peterson DM, et al. Correlation of quantitative bone marrow and blood cultures in AIDS patients with disseminated Mycobacterium avium complex infection. J Infect Dis 1999; 180:438–47.
21. Sula L, Sulova J, Stolcpartova M. Therapy of experimental tuberculosis in guinea pigs with mycobacterial phages DS-6A, GR-21 T, My-327. Czech Med 1981; 4:209–14.
22. Rastogi N, Labrousse V. Extracellular and intracellular activities of clarithromycin used alone and in association with ethambutol and rifampin against Mycobacterium avium complex. Antimicrob Agents Chemother 1991; 35:462–70.
23. Bermudez LE, Young LS. New drugs for the therapy of mycobacterial infections. Curr Opinion Infect Dis 1995; 8:428–38.
24. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994; 263:678–81.
25. Clemens DL, Horwitz MA. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 1995
; 181:257–70.
26. de Chastellier C, Lang T, Thilo L. Phagocytic processing of the macrophage endoparasite, Mycobacterium avium, in comparison to phagosomes which contain Bacillus subtilis or latex beads. Eur J Cell Biol 1995; 68:167–82.
27. Gomes MS, Paul S, Moreira AL, Appelberg R, Rabinovitch M, Kaplan G. Survival of Mycobacterium avium and Mycobacterium tuberculosis in acidified vacuoles of murine macrophages. Infect Immun 1999; 67:3199–206.